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I. Introduction 
 
 The goals of this experiment are threefold: first, to study the transient motion of a 
mechanical oscillator; second, to study forms of dissipation besides viscous damping; and third, 
to study the behavior of a driven oscillator. 
 
 A damping force that is proportional to the velocity (linear damping) is made by the eddy 
currents induced by the motion of the oscillator in a magnetic field.  This magnetic damping is 
analogous to the effect of the resistance in an RLC circuit.  Coulomb (or dry) friction is another 
form of damping that can occur in mechanical systems.  Coulomb friction, since it is independent 
of velocity, will exhibit a different form of damping.  Finally, turbulent dissipation can occur in 
mechanical systems.  Turbulent friction is found in the motion of air around a fast moving car or 
in the motion of water around a boat.  Such dissipation can increase as the square (or larger) 
power of velocity.  Turbulent friction also will exhibit a different form of damping.  The 
apparatus is illustrated in Fig. 1. 
 

 
 
Fig. 1 Optical sensors measure the position of the disc and the drive.  One sensor is mounted 
on the side of the disc.  The second sensor is mounted on the piano wire at the drive end. 
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II. Experimental Setup 
 
 This experiment will be carried out with a 4 inch diameter copper disc fastened to the 
center of a piano wire as shown in Fig. 1.  Before beginning the exercises note that the large 
magnet should be kept as far away from the computer as possible.  The large field could affect the 
computer’s hard drive.  Your wrist watch and credit cards should also be kept far from the magnet. 
 

The positions of the opto-electronic sensors relative to the code wheels attached to the 
disc and drive motor have been adjusted with an oscilloscope for optimal operation.  The 
positioning screws have been covered with red tape.  Do not remove the tape and do not adjust 
the positioning screws.  The code wheels are very delicate high angular resolution devices and 
can be easily damaged.  Therefore, whenever you are moving the torsional pendulum by hand, or 
positioning the magnet be extremely careful not to bump or touch either of the code wheels.  
 

The 16-bit instantaneous angular position data associated with the torsional pendulum 
and motor code wheels is stored locally in memory on a front-end electronics buffer board, 
which is read out via the TORSNHP6 LabWindows/CVI program.  The front-end electronics 
buffer board insures that the code wheel data is captured at uniform time intervals.  The time 
interval, or data acquisition rate, is set in hardware on the buffer board via a binary code 
implemented using four DIP switches. The default data acquisition rate is 50 Hz, which 
corresponds to a time interval of 20 msec. This sampling rate optimizes the resolution on the 
angular velocities associated with the torsional pendulum apparatus. See the appendix for the 
position of the DIP switches to achieve a given data acquisition rate, varying from 5Hz to 
200Hz. If the hardware data acquisition rate is changed from its default setting, then the 
TORSIONHP6 program must also be informed of this change in data acquisition rate from the 
nominal/default setting, via the program’s Time Base pull-down menu. If the hardware setting of 
the sampling time on the buffer board vs. what the TORSNHP6 program thinks it is, then the 
program will not analyze the code-wheel data correctly. 

 
The data acquisition electronics must be first initialized using the mouse to click on the 

INIT_DAQ button on the TORSNHP6 program.  A DAQ Initialized LED turns red after 
initialization. Next, with both the torsional pendulum and motor motionless, click on the 
ZERO_Counters button to zero the code-wheel up/down counters, thus defining the angular 
equilibrium/zero positions for each {note: when the motor is then turned on, unless the motor is 
at its true equilibrium position, the equilibrium positions for both torsional pendulum and motor 
will be changed – post-facto, note that you can also use the SHIFT_DATA button to correct for a 
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non-zero offset in the torsional pendulum angular position data}. Use the mouse to click on the 
START button to initiate data-taking. When the STOP button is pressed, the pendulum/motor 
code-wheel data is then read out from the front-end electronics buffer board associated with the 
STOP-START time interval. The TORSNHP6 program will plot the torsional pendulum/motor 
angular position, velocity and acceleration data on-line via pull-down menus and also allows a 
certain level of data analysis on-line.   The raw angular position data is simply the code-wheel 
sensor reading versus sample number.  One revolution of the disc (2π radians) equals a code-
wheel sensor reading of 8192.  The pendulum/motor angular velocities and accelerations are 
calculated using finite time differences of angular position data. The TORSNHP6 program has a 
pull-down menu offering a choice of four algorithms for calculating angular velocity and 
acceleration. The first choice is the simplest – using finite differences associated with nearest-
neighbor data (n and n-1 elements). The second algorithm choice is similar, but uses (n+1, n and 
n-1 elements). The third algorithm uses a weighted average of 75% from symmetric nearest 
neighbors (n+1, n and n-1 elements) and 25% from next-to-nearest neighbors (n+2 and n-2). The 
fourth algorithm, which is the default/nominal algorithm uses a more sophisticated approach – 
known as the Verlet integration method, which uses leading-order terms associated with the 
Taylor series expansion of the angular position finite-difference data. We encourage you to 
investigate/compare velocity/acceleration data calculated via each of these four algorithms. The 
WRITE_DATA button writes out the torsional pendulum and motor data to the disk.  The 
position of the disc at the moment when data acquisition begins is taken to be the zero position.  
This offset can be corrected for in Origin when you analyze your data. 

 
1. How to use the drive motor: 

The drive motor applies torque to the torsional pendulum through a series of small steps. 
A pulse applied to the motor rotates the shaft by a small and well defined angle. By controlling 
the rate of the applied pulses, the angular velocity of the motor can be accurately controlled. This 
type of motor is called a stepper motor. 

 A stepper motor controller receives pulses from an external pulse generator and produces 
a current pulse that is applied to the stepper motor. In our experiment, we will use the Wavetek 
Function Generator to supply the pulses to the setter motor controller. The drive frequency is set 
by changing the frequency of the Wavetek. To determine the drive frequency, connect the CAL 
OUT connector of the controller to the HP Digital Multimeter using the BNC to banana 
connector. The multimeter should be set to FREQ mode. The drive frequency is given by 
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1,600
CAL OUTPUT in Hzdrive frequency in Hz = , 

or 

/
254.6

CAL OUTPUT in Hzdrive angular frequency in rad s =  

 
On the frequency counter, push the "atten" button in, and the "filt" button out.  The frequency 

reading should be very stable. When 
setting the frequency settings of the 
Wavetek, the stepper motor 
controller should be in the STOP 
position. The function generator 
should be set to positive square 
wave output, Vout = 2.50 Vpp, and 
Voffset = 0 V. Set the frequency to an 
initial value of 300 Hz. To turn the 
motor on, set the controller to the 
RUN position.  

 The mechanism that 
connects the drive motor to the wire 
is covered for safety concerns.  The 
motor rotates at a constant rate, and 
the connection mechanism causes 
the wire to oscillate approximately 
sinusoidally; the linkage between 
the drive motor and the wire does 
not produce perfect sinusoidal 
motion.  There are small 

components in the torque on the wire at twice and three times the drive frequency.  The presence 
of these components can be found by running the drive motor at one-half or one-third of the 
resonant frequency and observing that the steady state motion of the disk is not purely 
sinusoidal. 

 

 There may be a background sound, like grinding metal, which is normal.  It is not 
destroying itself.  However, if the motor stalls by being started or run at too high a speed, it 
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should be stopped, and its speed reduced before restarting.  In general, you should turn on the 
motor at a low speed and then raise the speed. 
 
III.  Exercises 

WARNING: Be very careful when driving the oscillator near resonance.  The piano wire 
can break, which is very dangerous.  ALWAYS keep the plastic covering on when 
operating the oscillator, regardless of the frequency, for your safety. 

 
This is a two-week experiment.  It is suggested that you spend the first week measuring various 
sources of damping and the second week using the drive motor; however, you may proceed 
through the experiment in whatever fashion you see fit.  Immediately following this section are 
some experiments.  Following the experiments is a rather detailed section on data analysis, 
including Fourier transformations.  Regardless of what experiments you choose do, it is expected 
that you will perform this type of data analysis.     
 
Exercise 1. Determine the torsional constant from static measurements. 
 
The masses and dimensions of the copper disc and plastic disc are written on the discs.  
Calculate the moment of inertia of the disc.  Measure the diameter of the piano wire with the 
precision micrometer, using any necessary technique to minimize the uncertainty. Measure and 
record the lengths of wire, L1 and L2 (see Fig. 2 in Appendix I) which support the disc.  To 
measure the torsional spring constant of the piano wire, you will use a static displacement of the 
disc under a known torque.  The method is illustrated in Fig. 4.   
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Figure  4  Measurement of Torsional Spring Constant 
 

You will need to clamp a pulley to the edge of the table and use steps of 20 grams to 
crank the disc.  In order to stabilize the disc of the torsional pendulum quickly, position the 
magnet around the disc to help damp its motion.  Start the TORSNHP6 program and add one 
mass at a time until you reach 100g, then remove them one at a time. 
 
The spring constant K is determined from the slope of the line of angle θ versus mass m 

 
g m
K
ρθ = . (1) 

 
In Eq. 1 g is the gravitational acceleration of 9.80 m/sec2 and ρ is the radius of the disc.  
Uncertainty in the mass may be taken to be ±0.01 g.  Determine the torsional constant, K, and its 
uncertainty by analyzing these data in Origin.  Sample data are shown in figure 5. 

     
Fig. 5 Disk position for various static torques 

 
Exercise 2.  Determine the torsional constant from dynamic measurements. 
 
Carefully measure the natural frequency of the copper disc.  From your data, calculate the 
natural frequency.  Since o K Iω = , you can compare this value of K with the value you found 

earlier.  You can also plot angular acceleration versus position to calculate K.  Sample data are 
shown in figure 6. 
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Fig. 6 Disc position versus time for undamped oscillation 

 
Exercise 3.  Under- and over-damped motion with viscous damping 

 
Viscous damping can be achieved by placing the disc between the poles of a magnet.  

The eddy currents induced in the disc by its motion are proportional the angular velocity of the 
disc, and these eddy currents will exponentially damp the motion of the disc.  The exact 
equations for viscous damping are discussed in Appendix I.  Move the magnet poles to 
completely surround the copper disc.  The motion of the disc should be “over damped,” i.e. 
decay with no oscillation.  Record this motion.  Next, back the magnet away from the disc 
slightly and repeat until you observe underdamped motion.  You may also try to find the 
critically damped position though this may prove difficult.  Sample data are shown in figure 8.   

 

 
Fig. 8 Disc position versus time for viscous under-damped motion 

 
 
 
Exercise 4.  Demonstrate Coulomb (kinetic frictional) damping 
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The motion of the disc can be damped by kinetic friction, also known as Coulomb 
damping.  Coulomb (frictional) damping is independent of the magnitude but dependent on the 
direction of the velocity.  This type of damping will cause the amplitude to decrease linearly 
with time.  To study Coulomb damping remove the magnet and position the bristles of the small 
paint brush close to the rim of the disc.  Sample data are shown in figure 9. 

 

 
Fig. 9 Disc position versus time for Coulomb damped motion 

 
 
Exercise 5.  Demonstrate turbulent damping 
 

The “undamped” oscillator is, of course, subject to damping mechanism.  These damping 
mechanisms are present with the magnet and with the paint brush, but they are negligible 
compared to the magnetic or the Coulomb damping.  One mechanism is drag from the 
surrounding air.  We must increase the drag to demonstrate turbulent damping.  The addition of 
light-weight vanes to the disc will increase the drag from the air and produce turbulent damping.    
Attach either the cardboard or styrofoam pieces perpendicular to the disk with tape, then observe 
the oscillations.  Try to maintain the symmetry of the disk when placing the vanes.  You will 
need to take data for a very long time to see this effect.  

 
This is the end of the experiments for the first week.  We will now move on to experiments 
involving the drive motor.   
 
Exercise 6.  Demonstrate the phenomenon of beats 
 
The superposition of the undamped transient motion and the driven motion can be arranged to 
demonstrate the phenomenon of beats.  Since damping will cause the transient to die away, the 
magnet should be far away from the disk so that the motion is undamped.  You can recall from 
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the discussion above that the motor control box generates a signal, CAL OUTPUT, which is 
proportional to the drive frequency, 
 

   
1,600

CAL OUTPUT in Hzdrive frequency in Hz = ,   

 
You should calculate the CAL OUTPUT in Hz which corresponds to the natural frequency of the 
disk.  Note that the frequency counter displays in kHz.  Choose a drive frequency just below 
resonance, for example 0.9 of f≈ , to observe the beats. Do not try to set the drive exactly to 
resonance.  Without damping, the amplitude of the oscillation can become dangerously 
large, causing the piano wire to break.  Sample data are shown in figure 10.  It can be 
somewhat challenging to produce a good beat pattern. 

 
Fig. 10 Beat frequency demonstration (real data) 

 
Exercise 7.  Measure the amplitude and phase of damped, driven oscillator 
 

You now move on to the major part of the laboratory exercise: the measurement of the 
amplitude and the phase of damped, driven oscillator as you vary the driving frequency.  Recall 
the expressions 
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( )( ) ( )cos ( )t B tθ ω ω β ω= −  ( )

2

22 2 2
( ) o o

o

B λθ ωω
2ω ω ω γ

=
− +

 ( )2 2
tan ( )

o

ωγβ ω
ω ω

=
− , 

 
for the steady state motion with amplitude ( )B ω  and phase ( )β ω .  The natural frequency of the 
disk is fixed.  It is about 0.5 Hz.  The drive amplitude is fixed.  It is about 0.65 rad.  You do have 
control over the damping parameter.  If you would like to have a large change in the amplitude 
of the disk near resonance, you must choose small damping.  Fig. 11 below shows a damped 
oscillation.  When the magnet is close to the disk, you have large damping.  When it is far from 
the disk, you have small damping.  You should try to find the magnet position which produces a 
damping time of about 5-10 s.  Recall that the damping time is the time over which the amplitude 
of the oscillation decays by a factor of 1 / e = 0.368.  The damped oscillation in Fig. 11 has a 
decay time between 7 and 8 seconds.  Position the magnet a centimeter from the disk, and 
measure the decay time of the free oscillation.  Observe the free oscillation data and adjust the 
magnet position accordingly.  Record the decay time. After you have found the correct magnet 
position, you must not move the magnet for the entire series of measurements below. Moving 
the magnet changes the width of the resonance curve. 

 
Fig. 11 Magnetically Damped Oscillation 
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 Before beginning the measurement, look at Fig. 12.  You can see that you must choose the 
drive frequencies carefully to see the resonance peak.  For an oscillator with small damping, you 
could easily miss the resonance peak if your frequency steps are too large.  You should plot 
amplitude and phase versus frequency as you take the data in order that you don't miss the peak.   
Remember that after each change of the drive frequency, the transient motion of the oscillator is 
excited.  You must wait at least three decay times for this transient to decay, i.e. 15 to 30 seconds.  
 

  
Fig. 12 Amplitude and phase of damped, driven oscillator versus frequency (real data)  
 
Figure 13 below shows the motion of the oscillator and the drive motor as a function of time at a 
drive frequency of 0.477 Hz as read from the frequency counter.  The peak-to-peak amplitude is 
indicated in the figure.  Use the cursors to obtain this quantity.  When there are two plots on the 
screen at once, the two cursors can cause confusion.  When selecting two plots, you will see this 
notice on the screen: 
 

For these plots the user must physically place the YELLOW cursor on the BLUE 
(Pendulum Data) curve and place the MAGENTA cursor on the MAGENTA (Motor 
Data) curve.  Only then will X-Y cursor port data be correct. 

 

Fig. 13 also shows the time difference between the maximum amplitude of the drive motor and 
the maximum amplitude of the oscillator.  This time difference is denoted as Δt in the figure.  
You can convert this time difference into a phase.  Recall that a time difference of one period 
( 1/T = f ) is a phase difference of 2π. Alternatively, you can download the time traces into 
Origin and fit the data to a sinusoidal function with a phase offset. This would be a more 
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accurate determination of the amplitude, frequency and phase of the drive and the response. The 
phase difference between the drive and response can thus be determined. 
 

 
Fig. 13 Oscillator and drive versus time (real data) 

 
 
Exercise 8.  Drive the oscillator at a sub harmonic of the resonant frequency  
 

Due to the geometry of the drive linkage mechanism, the drive motion is not purely 
sinusoidal!  Empirically, 
 

( ) ( )( )2 2 3( ) cos cos 2 cos 3drive ot t c t c t 3θ θ ω ω φ ω φ= + + + +  

 
where the amplitude of the second harmonic is about 6% and the amplitude of the third harmonic 
is about 3%.  (The higher order terms are due to the simple linkage between the stepping motor 
and the piano wire.  With the motor stopped, you may take off the cover plate and take a look.)  
If the drive frequency is set near a sub harmonic of the resonant frequency, the distortion gets 
magnified.  This effect is further exacerbated by small damping.  Set the drive frequency to a 
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sub-harmonic and take some data.  Plot the data and identify the harmonics in the motion of the 
disk.



Your report should address the following points: 
 
1. Calculate the moment of inertia of the torsional oscillator.  Argue quantitatively as to 
why the hub and plastic disc may be neglected in this calculation. 
 
2. What are the values of the torsional constant from exercises 1 and 2?  From your 
measurements of the torsional constant and the radius of the piano wire, calculate the shear 
modulus of the material from which the piano wire was made.  Does your value of the shear 
modulus agree with the handbook value? 
 
3. From the moment of inertia obtained in part 1 and the torsional constant obtained in part 
2 above, calculate the natural frequency of the torsional oscillator.  Remember to carry along 
errors for your error analysis.  Compare the calculated natural frequency to the measured 
frequency. Include a plot of the measured oscillator motion. 
 
4. Compare the motion of the disc for the two (or three) forms of dissipation you 
demonstrated with the data graphed in an appropriate way.  Note differences in the motion in 
your discussion. 
 
(a)  For magnetic damping, calculate the attenuation constant, a, the logarithmic decrement, δ, 
and the quality factor, Q for the under damped motion. 
 
(b)  For Coulomb damping, find the frequency of the oscillation and compare it to the natural 
frequency.  Determine the Coulomb damping constant from the slope of the maximum amplitude 
versus time graph. 
 
(c)  For turbulent damping plot the log decrement vs amplitude.  Determine the region over 
which the dependence of log decrement on amplitude is linear.  Over this region fit the data to a 
straight line which passes through the origin. Find the trubulent damping coefficient. 
 
These questions pertain to the driven oscillator: 
 
5.  Compare the measured beat frequency to the expected beat frequency.  Include a plot 
showing the beat frequency.  See Figure 10. 
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6.  Find the decay time of the magnetically damped motion.  Use the semi-log plot of amplitude 
versus time.  From the slope, determine the decay constant, a, the decay time, 1/a, the 
logarithmic decrement, δ, and the Q of the oscillator. 
 
7.  Plot the amplitude of the oscillator versus frequency.  Compare the frequency at which the 
amplitude is a maximum to the natural frequency.  Find the frequencies above and below the 
resonant frequency at which the amplitude is 1 2  of its peak value.  The difference of these 

frequencies is the width of the resonance, γ.  Recall the relation between the decay constant, a, 
and the resonance width for a magnetically damped oscillator, compare a to γ. 
 
8.  Plot the phase versus frequency.  Find the frequency at which the phase is π/2.  Compare this 
frequency to expectations. 
 
9.  Plot the motion of the disc when the drive frequency is a sub harmonic of the natural 
frequency.  Identify the harmonics in the disc motion. 

Revised 9/25/2007 



Physics 401 Experiment 6 Page 17/36 Physics Department, UIUC 
 

 
Appendix I 

 
II. Theory 
 
 We will extend the theory presented in the RLC circuit lab to the torsional oscillator. 
 

 
Fig. 2 Schematic drawing of disc and support wires 

 
 Consider a solid uniform disc of mass M and radius ρ as shown in Fig.2 above.  The axis 
of the disc is along the horizontal.  The disc is supported by two pieces of piano wire of lengths 
L1 and L2.  The disc can rotate about its horizontal axis.  The angular position of the disc is 
denoted by the angle θ.    The motion of the disc is obtained from Newton’s Third Law: 
 

2

2

dI
dt

θτ α= = , (1) 

 
where α  is the angular acceleration and 21 2I M ρ= .  Torques are exerted by the wires shown 
in Fig. 2. 
 

1 2 1 2K K Kτ τ θ θ+ = − − = − θ  (2) 
K represents the combined torsional spring constant of the two wires.  K1, the torsional spring 
constant for the left-hand wire is 
 

4
1

1

1
2

K G r
L

π
=  (3) 
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where r is the radius of the wire and G is the shear modulus of the material from which the wire 
is made.  (See, for example, Mechanics by W. Arthur and S. K. Fenster, p. 513.)  Using Eq. 3 for 
K1 and K2, we obtain the total spring constant, K. 
 

4

1 2

1 1(
2

K G r
L L

)π
= +  (4) 

 
In the absence of additional torques the equation of motion of the disc is 
 

2

2
dI
dt

θ Kθ= − . (5) 

 
The above equation is recognized as the equation of motion of a simple harmonic oscillator.  The 
angular frequency is K Iω = . 

 
 There will be additional torques on the disc due to the various damping forces 
investigated in the experiments.  
 
 
Viscous damping 
 

We expect that resistive damping will have a term proportional to d dtθ , the angular velocity.  
This is called viscous damping, such as is achieved by placing the disk between the poles of a 
magnet.  The torque due to viscous damping is 
 

2| |
viscous R θ Rτ θ

θ
= = , (6) 

 
where is R is a constant with (for viscous damping) units of N⋅m⋅s.  With viscous damping the 
equation of motion is  
 

2

2 0d dI R K
dtdt

θ θ θ+ + = . (7) 

 
This equation is the familiar linear, second order differential equation. The solution is of the 
form ( )θ = stt Ae  .  Solving for s gives 
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2

1 2,
2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ± = − ± −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

R R Ks s a b
I I I

 (8) 

 
The nature of the solution depends on the sign. 
 

If 2 0>b , then the solution is overdamped: θ(t) falls to zero smoothly with no 
oscillations.  The solution is of the form 
 

( 1 1( )θ −= +at bt btt e A e B e )− . (9) 

 
( Note that a b> .)  The constants 1A and 1B are determined from the initial conditions.  For 

(0)θ θ= o  and (0) 0θ =  (initial angular displacement, no initial angular velocity), 
 

( )( )( ) cosh sinh 1 1
2

at a b to
o

a at e bt bt e a b t
b b

θθ θ − − −⎛ ⎞ ⎛ ⎞= + → + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

>> .(10) 

 
 For 2b = 0, the solution is critically damped.  θ(t) will fall to zero in the minimum time 
without oscillation.  There are no longer two distinct solutions to Eq. 8, and the form of the 
solution is now 
 

( )2 2( )θ −= + att A B t e  (11) 

 
Again, the constants 2A and 2B are determined from the initial conditions.  For (0)θ θ= o  and 

(0) 0θ =  (initial angular displacement, no initial angular velocity), 
 

( )( ) 1θ θ −= + at
ot at e . (12) 

 
For critical damping 2b = 0 implies that 4criticalR K= I  and a K= I . 

 
If 2b  < 0, b is a complex number, and we have an oscillatory solution of the form 
 

( 3 3( ) at ibt ibtt e A e B eθ −= + )−  (13) 
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Again, the constants 3A and 3B are determined from the initial conditions.  For (0)θ θ= o  and 
(0) 0θ =  (initial angular displacement, no initial angular velocity), 

 

( ) cos sinθ θ − ⎛ ⎞= +⎜
⎝

at
o

at e bt bt
b ⎟

⎠
 (14) 

 
Coulomb damping 
 The motion of the disc can also be damped by kinetic friction, also known as Coulomb 
damping.  For Coulomb damping as long as the disc is moving, the torque is a constant, 
independent of the magnitude but dependent on the direction of the velocity.  The torque always 
opposes the motion of the disc.  Coulomb damping then is described by the torque, 
 

| |
Coulomb C θτ

θ
= . (15) 

 
where C has units of Nm.  The differential equation then becomes 
 

                       
| | 0I C Kθθ θ
θ

+ + = . (16) 

 
There are actually two differential equations here.  For 0θ >  the equation is I K Cθ θ+ = − , 
and for 0θ <  the equation is I K Cθ θ+ = .  Both of these equations are easily solved.  They are 
linear, second order inhomogeneous equations.  If C were zero, the equations become the 
equation for a simple harmonic oscillator.  We need only to add the particular solution to the 
homogeneous solution, and the particular solution is the constant C K± . 
 

Suppose that we have the usual initial conditions, (0)θ θ= o  and (0) 0θ = .  Then initially 
θ after 0t =  must decrease and, therefore, 0θ < .  The solution for this case is 
 

( ) ( )cos 0ot C K C K t tθ θ ω= + − ≤ ≤ π ω  
 
where K Iω = .  This solution is valid for half a period, or, equivalently, until θ  goes through 

zero and changes sign to 0.θ >   Then the equation becomes I Kθ θ C+ = − , and the solution is 
 

( ) ( 3 )cos 2ot C K C K t tθ θ ω π ω π ω= − + − ≤ ≤ . 
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Note that after a half of a period at 2t π ω=  ( )(2 ) 2o C Kθ π ω θ= − − .  In one period the 

amplitude of the oscillation has decreased by (0) (2 ) 2C Kθ θ π ω− = .  After iterations we 

obtain 
 

2 1 2( ) ( (4 3) )cos ( 1) ( ) 1,2,...
2

1 2 2( ) ( (4 1) )cos ( ) 1,2,...
2

o

o

t C K n C K t n t n n

t C K n C K t n t n n

π πθ θ ω
ω ω

π πθ θ ω
ω ω

= + + − − − ≤ ≤ − =

= − + − − − ≤ ≤ =

(17) 

 
In every period the amplitude decreases by the constant 4C K .  In contrast to viscous damping 
for which the amplitude decreases exponentially, for Coulomb damping the amplitude decreases 
linearly.  At the end of some half period the restoring torque will be less than the frictional 
torque, i.e. | ( )|K t n Cθ π ω= <  for some n, and the motion will stop.  The disc does not return 
to its equilibrium position, 0θ =  

 

Turbulent damping 
 
Since the disc moves through air, the motion of the disc can be damped by the air turbulence.  
The damping due to turbulence can be approximated by a power of the angular velocity 
 

1| |n
turbulent C θτ

θ

+

=  (18) 

 
where n ≥ 2.  The constant C now must have units of N⋅m⋅sn.  This gives us a non-linear, second 
order differential equation, 
 

1| | 0
n

I C Kθθ θ
θ

+

+ + = , (19) 

 
which, in general, has no closed form solution.  The damping term is more phenomenological 
than fundamental, and a non-integer value for n may better describe the phenomenon. 
 
Although we cannot in general obtain a closed form solution for Eq. 19, we can obtain an 
approximate solution in the situation that the damping is small so that the motion is still 
oscillatory, albeit with a decaying amplitude. Rearranging Eq. 19 gives 
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( ) 2 21 1 | |
2 2

nd dE t I K C
dt dt

θ θ θ 1+⎛ ⎞= + = −⎜ ⎟
⎝ ⎠

. (20) 

 
The left hand side is recognized as the time derivative of the total energy, the sum of kinetic and 
potential energy.  The total energy decreases at a rate determined by the damping.  If we 
integrate over one period, we obtain an expression for the energy loss in a period, 
 

1

0 0

| |
T T

ndE dt E C dt
dt

θ +Δ = = −∫ ∫ , (21) 

 
which without loss of generality we assume begins at t = 0.  Now we suppose that over one 
period the motion is harmonic so that ( ) cosot tθ ω= Θ  and ( ) sinot tθ ω ω= − Θ .  oΘ is the 

amplitude at the beginning of the period, and K Iω = .  Our goal is to find the change in the 

amplitude over one period.  We have assumed small damping so we are allowed to assume that 
the oscillatory frequency is that of the undamped motion.  With this assumed form for the 
solution, the energy loss in one period becomes 
 

( )
/ 4

11

0 0

| sin | 4 sin
T T

nn
o o

1nE C dt t C dt tω ω ω ++Δ = − Θ = − Θ∫ ∫ ω+ , (22) 

 
( ) ( )1 1/ 2

1

0

4 sin 4
n n

o n
nE C d C

πω ω
ξ ξ

ω

+ +

+Θ Θ
Δ = − = − Γ∫ o

ω
, (23) 

 

where 
/ 2

1

0

sinnn d
π

ξ ξ+Γ = ∫  is just a definite integral.  These integrals can easily be evaluated for 

integer n.  The first few values are 0 1Γ =  , 1 4πΓ = , and 2 2 3Γ = . 
 

Viscous damping has n = 1, and we find the energy loss in a period to be 
2
oE π ωΔ = − Θ R .  Note that the damping constant, 2

oR E π ω= −Δ Θ .  We are then lead to 

define an equivalent damping coefficient for n ≠ 1 as  
 

( ) ( )
1

1
2 2 2

4 4
n

no
eq n o n

o o

CE CR
ω

ω
ππ ω π ω

+
−ΘΔ

= = Γ = Θ
Θ Θ

Γ , (24) 
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By construction the equivalent (linear) damping torque, eqR θ , has the same energy loss per 
period as the (non-linear) damping torque, 1| |nC θ θ+ .  Assuming an equivalent damping 
torque, we can define an equivalent attenuation coefficient, 
 

( ) 12
2

neq
eq o n

R Ca
I I

ω
π

−
= = − Θ Γ . (25) 

 
With an equivalent attenuation coefficient we then assume that the amplitude decays in one 
period exponentially so that ( ) exp( )o eqT a Tθ = Θ − .  Then the log decrement can be found as 

 

( ) 12 2ln
( )

no
eq o n

Ca T
T I

πδ ω
θ π

−Θ⎡ ⎤
= = = Θ Γ⎢ ⎥

⎣ ⎦ ω . (26) 

 
For viscous damping we recover aTδ = .  From Eq. 26 we note that 1n

oδ −∝ Θ .  For turbulent 

damping, n=2, we obtain 
 

8
3 o
C
I

δ = Θ . (27) 

 
This lengthy development leads to the conclusion that for turbulent damping the log decrement is 
linear with the initial amplitude, oΘ .  A larger initial amplitude has larger velocities and larger 
damping. 
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Driven Torsional Oscillator 

The equation of motion for the viscous damped, sinusoidally driven torsional oscillator is 

 
2

2 coso
d dI R K K
dt dt

θ θ tθ λ θ ω+ + = . (28) 

 

In the above equation θ  is the angular displacement of the disc, I is the moment of inertia of the 
disc, R is the viscous damping coefficient, and K is the torsional spring constant of the wire.  The 
right hand side represents the external torque on the disc through the wire from the sinusoidal 
drive motor.  The amplitude of the drive is oθ .  The external torque includes the spring constant, 
K, and the factor ( )1 1 2L L Lλ = +  due to the fact that the drive is separated from the disk by a 

length of wire.  The zero of time is chosen so that the torque from the drive is a maximum at t = 
0.   

Eq. 28 is a linear, second-order non-homogeneous differential equation.  The solution of such an 
equation is the sum of the solution for no driving torque, the transient solution, and the steady 
state solution due to the presence of the driving torque. The transient solution is  

( )1( ) cosat
t t Ae tω φ−= − , (29) θ

where the decay constant and angular frequency are given by 

 

2
⎛ ⎞=⎜ ⎟
⎝ ⎠

 and 
2

1 2
K RRa

I I I
ω ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (30) 

 

The undamped, natural angular frequency is  

 

o
K
I

ω ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (31) 

 

so the damped frequency is equal to 

 

2
⎛ ⎞=⎜ ⎟
⎝ ⎠

Ra
I  and 2 2

1 o aω ω= − . (32) 
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 The steady state solution will have the frequency of the driving torque.  Since in general 
1ω  is not the same as ω , before the transient solution dies out, the motion of the disc is the 

superposition of two oscillations with different frequencies.  The superposition of two 
frequencies produces the phenomenon of “beats.” 

 

 We search for a steady-state solution of the form (where we will take the real part) 

( ) i t
ot e ωα α= , (33) 

where oα  is a complex constant.  Plugging in, we obtain 

( ) ( )2
o o o oI i R i K Kα ω α α λ θ+ + =ω . (34) 

Solving for  oα , we obtain 

( )
2Kλ θ λθ ω

2 2 2
o o o

o
oK I i R i

α
ω ω ω ω ω γ

= =
− + − + . (35) 

 

In addition to the undamped natural angular frequency defined in Eq. 31 above, we also 
introduce the quantity, 

2 2
2

R R a
I I

γ = = = . (36) 

 

 The complex coefficient, oα , a function of the driving angular frequency, ω , can be 
written in polar form as 

( ) ( )i
o B e β ωα ω −= . (37) 

 

where ( )B ω  and ( )β ω  are given by 

 

( )
( )

( )
2

2 222 2 2 2
tano o

o
o

B λθ ω ω γω β ω
ω ωω ω ω γ

= =
−− +

. (38) 

 

We take the real part of  oα  to find the steady state solution to Eq. 28. 
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( ) ( ) ( )( )coss t B tθ ω ω β ω= − . (39) 

 
The full solution for the damped, driven torsional oscillator is the sum of the transient and steady 
state solutions, Eq. 29 and Eq. 39. 

 

( ) ( ) ( ) ( ) ( )( )at
1( ) cos cost st t t Ae t B tθ θ θ ω φ ω ω β ω= + = − + −− . (40) 

 

The constants A  and φ  are determined by matching the solution to the initial conditions. 

 We have assumed that the oscillator is underdamped so that the oscillatory solution, Eq. 
29, describes the transient.  We could, in principle, also use the critically damped and over-
damped solutions here, but they die out in one period or less and the steady state becomes the 
only solution. 

 

B. Beats 

 

 Two oscillators of equal amplitude and of similar, but not identical, frequencies generate 
waves.  The resultant wave at a given point in space is then the superposition of two frequencies.  
Then with a judicious choice of phase of the two independent oscillators, we obtain 

 

( ) ( )sin sin 2 sin cos
2 2

o o
ot A t A t tω ω ω ωω ω − +⎛ ⎞ ⎛ ⎞− → ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
A . (41) 

 

The difference in the frequencies is small for oω ω≈ , so 
ω

2
o

o
+ω

≈ ω .  The perception is of a 

sound with a single frequency but with an unsteady amplitude.  It is possible to demonstrate the 
same phenomenon with the torsional oscillator with a judicious choice of frequencies and initial 
conditions. 

 Suppose we hold the disc at its equilibrium position with the drive motor running.  Since 
the disc is at its equilibrium position and is at rest, both 0θ =  and 0θ = .  If we release the disc 
when the drive is exerting its maximum torque, we impart an initial angular acceleration.  
Consider the superposition of the transient and steady state motion, Eq. 40, for an oscillator with 
small damping and for times for which the transient has not yet decayed away.  Then the 
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exponential function in Eq. 16, ( ) ( )exp exp 2a t tγ− = − , is close to one.  We can also substitute 

oω  for 1ω .  With these conditions the motion of the disc, Eq. 40, becomes, using as initial 
conditions  ( )0θ = 0 and ( )0 0θ = . 

 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

cos cos sin sin cos

cos sin sin cos sin

o o o

o o o

t B t B t B t

t B t B t B t

θ β ω ω β ω ω ω β

θ ω β ω ω β ω ω ω β

= − − + −

= − − −
. (42) 

 

If we are close to resonance we can set 1oω ω =  and 2β π= , we obtain 

 

( ) ( )

( ) ( )

sin cost B t B t
2

sin sin

2 sin cos
2 2

o

o

o o

B t B t

B t t

ω ω

πθ ω ω

ω ω ω ω

⎝ ⎠
= − +

− +⎛ ⎞ ⎛= ⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎛ ⎞≈ − + −⎜ ⎟

⎞
⎟
⎠

 (43) 

 

Recall that the amplitude B  depends on ω  and oω , so that  
 

( ) ( )
2

2 2
2 sin cos

2 2
o o o

o

t t toλθ ω ω ω ω ωθ
ω ω

− +⎛ ⎞ ⎛ ⎞≈ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠
 (44) 

 

For oω ω≈  we see in addition to the sinusoidal oscillation at ω , a modulation of the amplitude 
at the beat (angular) frequency 2oω ω− .  Note that in many texts the beat (angular) frequency 

is defined as oω ω− .  It is also possible to get convincing beats by just turning on the drive 

motor with the disc at rest.  
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C. Resonance 

 If we assume that the transient solution has died away, the motion of the disc is given by  

 

( )
( )

( )( )
2

t
22 2 2 2

cos 1o o

o

t tλθ ωθ ω β ω γ
ω ω ω γ

= −
− +

>> . (45) 

 

In the high frequency limit ω oω>>  and 1ω γ>>  Eq. 45 gives 

 

( ) ( )
2

2 coso ot tλθ ωθ ω π
ω

= − . (46) 

 

The amplitude decreases as 21 ω  as shown in the figure above.  In the low frequency limit, 
0ω → , the amplitude approaches oλθ .  For ω  close to oω  and with sufficiently small damping 

that the term, 2 2γ ω , in the denominator can be neglected,  we find the amplitude on either side 

of oω  falls off as ( )2 2
o ω− .  Very close to resonance, 1 ω oω ω≈ , the 2 2γ ω  term in the 

denominator cannot be neglected, and its magnitude determines the “line-width” of the 
resonance, i.e. the range of frequencies for which the amplitude is large.  The width of the 
resonance depends strongly on the damping constant, as shown in the figure below.  

    

Fig. 1 Amplitude and phase of damped, torsional oscillator versus frequency (calculation) 
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 We might note that the maximum amplitude of oscillation does not fall precisely at 
resonance, which we have defined as oω ω= .  This is a very small point, but perhaps worth 
noting.  The maximum amplitude is given by the (angular) frequency at which 0dB dω = .  With 

( )B ω  from Eq. 38 after a little algebra we find that 

 
2 2 2
max 2oω ω γ= − . (47) 

Data Analysis 
 
A.  Quality factor and log decrement 
 
There are many equivalent ways to discuss the motion of the oscillator.  Recall that the 
frequency of oscillation for under damped oscillatory motion is 
 

2
1

1
1

2 2 2
K Rf
I I

ω
π π

⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (48) 

 

The natural (undamped) frequency is 
1

2 2
o

o
Kf
I

ω
π π

⎛= = ⎜
⎝ ⎠

⎞
⎟ .   

 
If the motion is oscillatory and the damping is not large, there are two auxiliary 

parameters used to measure the rate at which the oscillations of a system are damped out.  One 
parameter is the logarithmic decrement, δ, and the other is the quality factor, Q.  The logarithmic 
decrement, δ, is defined by 
 

max

max 1

max
1( )

max 1

( )ln ln
( )

at

a t T

t e aT
t T e
θδ

θ

−

− +

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

= . (49) 

 
where tmax is the time when θ is at its maximum value and T1=period.  Note that for viscous 
damping, since a and 1T  are constants, δ is the same from initial to late times in the motion. 
 
The Q of the circuit, or quality factor, is defined as 
 

total stored energy2
decrease in energy per period

π=Q . 
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The Q can be related to the logarithmic decrement.  (Recall for the RLC circuit 1 1L IQ
R R

ω ω
= → .) 

 
1 1 1

1

1
2 2

Q
R I a a a T
ω ω ωπ π π

π δ
= = = = =  (50) 

 
For small R, the logarithmic decrement is small and therefore Q is large. 
 
 The amplitude of the oscillation decays exponentially as ate− .  From the definitions of δ 
and Q, we also find that the amplitude decays exponentially as ( )1exp t QTπ− .  Thus the 

amplitude decays by a factor of 1 e  in a time ( ) 11 et QT π= .  Q π  is the number of cycles of 

damped motion needed to reduce the amplitude to 1 e  of its original value.  This definition is 
equivalent to the definition of Q in terms of energy loss above. 
 

There is a third definition of Q which is appropriate for frequencies near resonance, as in part C 
above.  We have that 

 

1 1 1 1
2 2

Q
R I a a a T
ω ω ωπ π π

π δ
= = = = =  (51) 

 

For small damping 1 oω ω≈  and using 2a , we obtain an alternative interpretation of Q . γ =

 

oQ ω
≈ . (52) γ

 

For large damping the resonance line is far from symmetric, and Eq. 52 is not accurate. 

 

B.  Fourier analysis 

     Since the motion of the torsional oscillator is periodic in time – i.e. harmonic, Fourier 
analysis (FFT) can be a very useful tool for investigating the various frequency components of 
the oscillator.  The Fourier transform decomposes a function in the time domain into its 
frequency components in the frequency domain.  By carrying out a Fourier transform on your 
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data, you will be able to determine which frequencies are present in your system.  For example, 
when investigating the phenomenon of beats in the torsional pendulum data, two distinct 
frequencies should be observable, one that is associated with the shorter-period oscillation and 
one associated with the longer-period oscillation.  In order to carry out high-quality Fourier 
transforms of the torsional pendulum data, you should take stable, steady-state data for quite a 
long time, otherwise frequency artifacts can be introduced that aren't really there.  The Fourier 
transform is defined in the following way: 

( ) ( ) i tX x t e dt
+∞

−∞
= ∫ ωω  

( ) ( )1
2

i tx t X e
+∞ −

−∞
= ∫ ω dω ω

π
 

( )x t  is the original function in the time domain and (where )X ω is the corresponding function 

in the frequency domain. 

     In Origin, Fourier transforms are implemented by going to the “Analysis” menu and clicking 
on FFT.  There are a range of different parameters you can choose, though the defaults work 

quite well.  Below is a sample set of data 
and its Fourier transform.  The large DC 
component comes from the fact that the 
last point in the data set is not equal to the 
first point in the data set. 

As one can see there are two peaks: one 
corresponding to the higher 
frequency/shorter period oscillation, the 
other corresponding to the lower 
frequency/longer-period oscillation.  It is 
sometimes also possible to see higher 
frequency components e.g. a 2 ,4 ,...ω ω .  

These are caused by the departure of the 
mechanical linkage of  the drive motor 
from being a perfect sinusoid.  Fourier 
analysis can be a very useful tool for 
understanding your data and should be 
used in your report. 
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C.  Fitting functions 

Origin, in addition to doing Fourier transforms, can also fit a function to your data.  The data to 
fit is the data from magnetic damping, though in principle any data can be fit.  The theory 
suggests that the best type of fit to do would be a sinusoidal wave whose amplitude is damped 
exponentially.  Before fitting your data, it is important that you make sure the data oscillates 
about zero.  In origin, this type of fit can be found in the “Analysis” menu under “Non-linear 
curve fit.”  This will bring up a dialog box.  Click the “Function” menu and select “Select.”  
Under “Categories” select “Wavefunction” and under “Functions” select “Sinedamp.”  By 
selecting the second button in the top row, you can see how the function is defined (see figure 
below for an example). 
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There are four parameters that the function will fit: xc, w, t0, and A.  xc is the y-value of your 
function at x=0.  A is the initial amplitude of the function (the overall highest or lowest point).  
P1 is defined to be 2π.  w is the angular frequency (so w determines the number of seconds in 
one period).  t0 determines how long it takes for the amplitude to decay to 1/e of its original 
value.  To fit your function, click on the green light button.  
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 A dialog box will pop up asking if you wish to fit the current data set.  Click yes.  You need to 
input your guesses for the four fitting parameters depending on what your data looks like.  You 
may get an error suggesting you set xc as fixed.  Go ahead and do this, since the value of xc 
shouldn't change.  To fit the data, click on 10 Iter.  This will do 10 iterations of fitting and then 
show you the final results.  Continue fitting until the error on each parameter does not change or, 
alternately, until Chi-sqr is no longer reduced.  Chi-squared is a general measure of how good 
the fit is.  The lower the chi-squared, the better the fit, in general.  In the case of this fitting, it is 
not such a useful measure of “goodness” of the fit.  A better measure is how small the error on 
each parameter is and the value of R2, which you will see once the fit is over.  R2 should be as 
close to 1 as possible. 
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In the graph above is an example of an origin fit to magnetic damping data.  You can see that  

R2 =0.89538.  This means that the fit is rather good, even though chi-squared is so large.  From 
this fit, you can get a good feel for the time constant and the frequency of the sine wave.
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Appendix II 
Buffer Board Switch Positions 

 
 


